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Internal Alfvhn-acoustic-gravity waves propagating in an isothermal, perfectly 
electrically conducting, plane stratified, inviscid, compressible atmosphere per- 
meated by a horizontal stratified magnetic field in which the mean horizontal 
velocity U(x) depends on the height z only exhibit singular properties at the 
Doppler-shifted frequencies 

& QA, ad = 0, ~f: aA/( 1 + M2)*, ~f: (Q,/2k) [l + M 2  & {( 1 + &P)2 - 4R5/!22,2)6-]*, 
where QA is the Alfvhn frequency, sl, the sonic frequency and M the magnetic 
Mach number. The phenomenon of critical-layer absorption is studied using the 
momentum-transport approach of Booker & Bretherton (1967), the wave- 
packet approach (which is a consequence of the WKBJ approximation) of 
Bretherton (1966) and the technique involving wave normal curves of McKenzie 
(1973). The absorption effects are also illustrated, following Acheson (1972), by 
drawing ray trajectories. We find that the waves are absorbed at the critical 
levels Qd = ~f: Sl, and a,/( 1 + M2)*, and in particular we observe that these 
levels do not act  like valves as observed by Acheson (1972). We also conclude that 
the combined effect of velocity shear and density and magnetic-field stratification 
is to increase the number of absorption levels. 

1. Introduction 
It has been pointed out (Acheson 1972; Rudraiah & Venkatachalappa 

1972a, b, c, hereafter referred to as RVa, b, c )  that hydromagnetic wave groups in 
rotating and non-rotating Boussinesq fluids, like hydrodynamic wave groups 
(Bretherton 1966, 1969; Booker & Bretherton 1967; Jones 1967), can exhibit 
critical-level behaviour. More recently McKenzie ( 1973) has discussed the general 
nature of critical levels for any type of wave propagation in a stratified medium 
and has shown that a critical level at which a wave packet is neither reflected nor 
transmitted can exist only if the wave normal curve, which is formed by taking 
the cross-section through the wave normal surface in the plane of propagation, 
possesses an asymptote which is parallel to the direction of variation of the 
properties of the medium through which the wave propagates. 
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The work related to critical-level behaviour of waves in a stratified conducting 
fluid in RVa, b, c is mainly concerned with situations in which the speed of fluid 
flow is much less than that of sound in the medium and accelerations are slow 
compared with those associated with sound waves. Another important assump- 
tion made is the Boussinesq approximation, which amounts to the neglect of 
density variation except in the buoyancy term. This assumption that fluctuations 
in density occur principaIly as a result of thermal, rather than pressure, variations 
is a natural approximation in the case of a liquid, but is much more restrictive in 
the case of a compressible fluid. Conditions under which internal AlfvBn- 
acoustic-gravity waves are important in geophysics and astrophysics are usually 
far removed from the idealization of a Boussinesq fluid in which the speed of 
fluid flow is much less than that of sound in the medium. In the meteorological 
case, variations in density and pressure within the troposphere can scarcely be 
regarded as small. In  such circumstances we must study the propagation of waves 
in a compressible fluid without the Boussinesq approximation. Another important 
feature is that many aspects of upper-atmosphere dynamics and ionospheric 
irregularities may be explained in terms of atmospheric gravity waves (see Hines 
1960, 1963, 1964, 1968). These waves and their interactions with ionization and 
magnetic field have many subtleties and hidden characteristics that must be 
explored. 

Therefore, in the present study attention is focused on the effect of compres- 
sibility on hydromagnetic internal gravity waves. In  particular, we study the 
propagation in the presence of an aligned magnetic field of AlfvBn-acoustic- 
gravity waves in a compressible, stratified, inviscid, perfectly conducting, iso- 
thermal atmosphere in which the mean horizontal velocity in the x direction 
varies with the height x only. We consider a basic aligned magnetic field whose 
magnitude varies with height in such a manner as to render the AlfvBn velocity 
constant for the entireatmosphere. It may beremarked that in therealatmosphere 
the density, pressure and magnetic field do change with height though not 
necessarily in the manner implied above. The assumptions of constant AlfvBn 
velocity and constant temperature are made for mathematical simplicity so as 
to evolve the simplest model of a hydromagnetic atmosphere, and it is hoped that 
the physics of the problem are not materially changed. 

The mathematical formulation and the corresponding solutions are discussed 
in $ 3  2 and 3. In  $4.1 we show, as in the case of incompressible fluid (RV 1972c), 
that the total momentum flux, which is the algebraic sum of the wave momentum 
fluxes in the fields and the material media, is conserved everywhere in the fluid 
except across the critical levels and discuss the attenuation of waves, using the 
transfer of momentum. Also, we discuss in $4.2, using wave-packet analysis, the 
mechanism of absorption, reflexion and transmission of waves a t  the critical levels 
and illustrate this, following Acheson (1 973), through ray trajectories. These 
effects are also verified, in $4.3 ,  by drawing asymptotes to the wave normal 
curve. 
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2. Equations of the problem 
We consider a system of Cartesian axes with the z axis vertical. We assume 

the fluid to be compressible and ideal (zero viscosity, zero thermal conductivity 
and zero magnetic viscosity) with vertical density stratification. We consider an 
isothermal atmosphere, which gives a relatively simple approach to the physics 
of the problem and is sufficient for present purposes, although such an approach 
must limit the ultimate applicability and accuracy of the results. Under these 
assumptions the basic magnetohydrodynamic equations are 

a p , p  + v * ( p , q )  = 0, 

aP1p + (q  * V )  131 = C 2 [ a P l P  + (q * V)P,l, 

(2.2) 

(2.3) 

(2.4), (2.5) aH/at = V x (q x H ) ,  V . H  = 0, 

where q denotes the flow velocity, p1 the density, p l  the hydrodynamic pressure, c 
the (constant) sound speed, H the magnetic field andp the magnetic permeability. 

2.1. Equilibrium conjguration 
The compressible ideal fluid is assumed to have an x velocity component U varying 
in the vertical (z )  direction. The material density po(z) and the magnetic field 
Ho(z), in the 2 direction, are assumed to be of the form 

POW = PcexP ( - P x ) ,  H O W  = H e x p  ( -  W),  (2.6) 

(2.7) 

where ,i3 is the reciprocal of the scale height and is written as 

P = g(c2/y + 4Az)-l = gy{c2( 1 + &yM2))-l, 

where A denotes the Alfvh speed (pcHg/po)t, M = A / c  is the magnetic Mach 
number and y is the usual ratio of specific heats. For magnetostatic balance we 
have 

where p o  denotes the steady-state hydrodynamic pressure. 

(2.8) dPo/dZ = - (9Po +pHodHo/dz), 

2.2. Perturbed state 
On the equilibrium configuration discussed above we superimpose a small 
disturbance of the form 

(U +u, 0 7  4 7  Po +P, Po +P, (HO +hm It,, 4). 
We assume that the disturbances are small enough compared with the basic state 
that higher-order terms in perturbed quantities can beneglected. Equations (2.1)- 
(2.5) then reduce to a set of linear partial differential equations which admits 
plane-wave solutions in which all perturbation quantities f may be written as 

f = Re [ f ( x )  exp i (kx  + l y  - d)]. (2.9) 
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Elimination of all dependent variables but w leads to the wave equation 
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The other perturbation quantities are related to w by the formulae 

ik(R$ - Q:) [ dw ( kc2 d U )  w]  - [ ig12k-'Q2 A _ -  i d U / d ~ ]  w, (2.11) 
Q dz Qd dz Q lRd 

-c2-+ g+--  U =  

Q:-Q: dw dU 
v.q = Q [ Q: - ga2w - kQdz w ] ,  (2.13) 

d(How) i kH dU -w] - lH,v + i - - - 1 
h =-[ Qa dz 8, * ax ' (2.15) 

h, = (kH0/Qd)v, h, = (kHO/Qd) W .  (2.16), (2.17) 

When the basic flow is uniform the coefficients in (2.10) are constant and the 
equation has solution w cc exp (imz), where m is a constant vertical wavenumber. 
However, when the basic flow is not uniform, the most striking feature of (2.10) 
is its singularities a t  

In  the case of two-dimensional disturbances (i.e. I = 0) ,  though, the governing 
wave equation is singular only at 

Qa = 0, _+ Qc, _+ Qa/( 1 + M2)t (2.19) 

and not at  Q, = f. QA, contrary to the three-dimensional case. It is of interest to 
note, as in the case of singular solutions, that although these singularities do not 
tend directly to the incompressible case of RVc in the limit M -+ 0, i.e. c -+ 00, 

equation (2.10) gives the singularities of incompressible flow in the limit M -+ 0. 
In  the following sections we discuss the wave propagation in the neighbourhood 

of the singular levels and indicate some possible consequences. 
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3. Solutions of the wave equation 
The singularities (2.18) of (3.10) may evidently be regarded as a consequence 

of the loss of higher-order derivatives owing to the neglect of dissipative effects. 
In  order to eliminate these singularities, viscosity, magnetic viscosity and heat 
conduction must be considered and an eighth-order linear differential equation 
must then be investigated. Alternatively, following Miles' (1961) analysis in 
connexion with the critical level for internal gravity waves in a shear flow, they 
may also be regarded as a consequence of our restriction to a single sinusoidal 
component given by (2.9). Accordingly, by posing an initial-value problem and 
then determining its asymptotic solution as t- too,  we should, even in the 
absence of dissipative effects, be able to match the solutions on the two sides of 
the critical level. It has, however, proved possible to resolve the singularities by 
a simpler means by following Booker & Bretherton (1967). For a detailed mathe- 
matical analysis and the physical significance of this method we may refer to 
Acheson (1972). We also note that it is possible to reveal the significance of these 
singularities by using the WKB method and following the analysis of Bretherton 
(1966). 

In  this section we follow Booker & Bretherton's (1 967) analysis to resolve the 
singularities of (2.10). For this the power-series solutions of the wave equation 
(2.10) near the singular levels are obtained using the method of Frobenius and 
assuming that the velocity shear d U / d z  is independent of height. Near the critical 
levels Q, = 0,  Q, the complete solutions of (2.10) are respectively of the forms 

8 = A , ( ~ - z , ) ~ [ l  + ~ ~ ( z - ~ , , ) + a , ( z - ~ ~ ) ~ + . . , ]  

+ B,( z - 2 0 )  [ 1 + b , ( ~  - 20)  + b , ( ~  - ~ 0 ) ~  + . . .] (3.1) 
m 

and t3 = [A2+B21og(x-z,)][1+c,(z-z,)+ . . . I+ B, 2 ( X  - x#,  (3.2) 

where zo and z ,  are such that Qd = 0 a t  x = zo and Qd = SZ, a t  z = z,, A,, A,, Bl 
and B, are constants of integration while a,, a,, ..., b,, b,, ..., and cl, c,, ..., are 
known constants. A similar solution can be obtained near the critical level 
Qd = - QA. We note that solutions (3.1) and (3.2) are of the same form as those 
obtained by RVc near these critical levels in the case of incompressible conducting 
fluid. In  other words, the behaviour of waves near these critical levels is the same 
in both incompressible and compressible conducting fluids. These waves are 
compared with the hydrodynamic incompressible solutions of Booker & 
Bretherton (1967) and the hydrodynamic compressible solutions of Hines (1968) 
at the end of this section. 

The solution near the critical level Qd = Q A / (  1 + M2)* is 

where z2 is such that = QA/(  1 + M2)* at z = 2, and A,  and B, are constants of 
integration. Note that the solution (3.3) is similar to the solution (3.2). In  other 

9 F L M  73 
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words, the behaviour of waves near Qd = Q, is the same as that of waves near 
ad = QA/(  1 + M2)4. The solution near the critical level 

Qd = (Q,./24)[1+M2+{(1 +M2)2-4Q5/Q:)4]4, 
i.e. near x = xg,  is 

8 = A , ( Z - Z ~ ) ~ [ ~ + ~ ~ ( Z - Z ~ ) +  . . . ] + B , [ ~ + ~ ; ~ ( Z - Z ~ ) + . . . I ,  (3-4) 

where A ,  and B, are constants of integration. Similar solutions can be obtained 
near the remaining critical levels. 

It is of interest to know the behaviour of waves away from all these critical 
levels. For this, we restrict the value of Qd by 

which implies that for internal gravity waves the Brunt-Viiisala frequency N' 
should be much greater than all other frequencies. In  the limit c + m  this 
approximation becomes 

(3.6) 
which is the same as the one used by RVc in the case of incompressible con- 
ducting fluid. 

9 I&l/QE, (3.5) 

N2 9 a; - nz,, 

Using the transformations 

8 = G(z) exp (@x) ,  6 = ( z  - xo) - l  

and the approximation (3.5), (2.10) becomes 
(3.7) 

where s1, = q /y  = k(dU/dx)/{. We note that (3.8) has similar properties to the 
corresponding Boussinesq equation of RVc. The solution of (3.8) around = 0 is 

G = A 5 ( Z - Z o ) ~ f i ~ ~ [ l  +F,/(z-z,)+ ...I+ B6(z-z0)4-~*[1 +Z, / (z -z , )+ . . . ] ,  (3.9) 

where 

is the modified Richardson number, 

is the Richardson number and A,  and B, are constants of integration. If we fix 
(see Booker & Bretherton 1967; Acheson 1972) the branch of the complex powers 
in (3.9) by taking 

(z-xo)4*i* = [z-zol+exp{ fi,u,log I z -xo l }  for x > zo, 

it follows that 

Now we find that the amplitudes above and below the critical levels differ by a 
factor of exp (,u,n), the first term in (3.9) representing an upward-propagating 
wave and the second a downward-propagating wave, as is demonstrated in 3 4 
by equations (4.5) and (4.7). We note that the solution (3.9) and the attenuation 
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factor ,urn tend asymptotically to the hydrodynamic results of Hines (1968) in the 
limit R, -+ 0 (i.e. M 3 0) and to the incompressible results of RVc in the limit 
c 3 00 with a suitable density stratification factor ,5. 

It is of interest to know the behaviour of waves in (i) the case of no propagation 
in the y direction (i.e. I = 0) and (ii) the hydrodynamic case (i.e. H = 0). 

(i) No propagation in the y direction. The governing wave equation for this case 
can beobtainedfrom (2.10) bylettingl-t 0. Thesingularitiesofthisequationareat 

Ra = 0, RA/(I +A?')+, - + Qc. 

The solutions of the wave equation near these singularities are respectively 
similar to (3.1), (3.2) and (3.4). In  other words, near these critical levels the 
behaviour with two-dimensional propagation is the same as that with three- 
dimensional propagation. 

(ii) Hydrodynamic case. When the hydromagnetic effects are absent the 
singularities of the governing wave equation are a t  51, = 0, & R,. The solution 
near Q, = 0 is the same as the solution obtained by Hines (1968) in the case of 
two-dimensional motion with the modified v defined by 

v = &+i(J ' - t ) I ,  

where 
NP2(  1 + Z2/k2) 

(d Uldz ) 
J' = 

is the modified Richardson number. Thus in hydrodynamics the attenuation 
increases in the case of three-dimensional propagation. The solution near 
Qd = Q, is similar to (3.4). 

To find the effect of magnetic field on critical levels it is of interest to compare 
the hydromagnetic waves given by (3.1) with the corresponding incompressible 
solutions of Booker & Bretherton (1967) and compressible solutions of Hines 
(1968). They showed that the waves are attenuated near the critical level 
Rd = 0. However hydromagnetic waves, discussed in 5 4, pass through the critical 
level Rd = 0 without any attenuation and instead are absorbed at the critical 
levels Ra = & RA, & a,/( 1 + M2)*. Therefore the behaviour of hydromagnetic 
waves near Qa = 0 is entirely different from that of hydrodynamic waves a t  this 
critical level. 

4. Critical-layer absorption 
In  this section we study the absorption of waves near the critical levels using 

momentum transfer to the mean flow, the group-velocity approach and the wave 
normal technique. 

4.1. Transfer of momentum to the meanjow 

The vertical fluxes in the x and y directions of horizontal momentum, which is the 
algebraic sum of the wave momentum fluxes in the fields and material media, are 
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where an overbar denotes an average over a horizontal wavelength, 

and w* is the complex conjugate of w. By differentiating (4.3) with respect to 
x and using (2.10) it  may be shown that 

dG/dz = 0. (4.3) 

Thus the mean flux of vertical momentum is independent of height. This is true 
at any level except the critical levels, where the use of (2.10) is invalid. Since the 
upward transfer of momentum has zero divergence there can be no transfer of 
momentum to the mean flow, except possibly across the critical levels. Hence the 
momentum flux can be taken as a measure of the strength of the wave. 

The upward transfer of wave energy per unit area a t  any level will be the mean 
rate of working of the total pressure forces (including magnetic pressure) on the 
fluid above, i.e. p j i ,  where 

PT = +pHO hx* (4.4) 

Using the expressions for p and hx we may easily show that 

Now we discuss the nature of the momentum and energy flux across each critical 
level and interpret the solutions in terms of wave motion. From (4.1), using (3.1) 
and (3.4), we 6nd that the momentum flux is continuous across the critical levels 

That is, the strength of the wave remains the same as it passes through these 
critical levels. In  other words, waves are completely transmitted across these 
critical levels without any attenuation. However, near the critical level 
ad = QA/(  1 + M2)* the total momentum flux, given by 

(4.61 I 2ip0(k, I )  AzB3(dU/dz) (c2 + A2)% for x > z2, 

2ip,(k, I )  (AzB3- IB312in) (dU/dz )  (c2+A2)8 

kc5QA 

kC5!2~ 

for x < z2, 
MX,V = 

is essentially discontinuous and hence momentum is transferred to the mean flow 
in the vicinity of this critical level. Similar behaviour occurs near the critical 
levels ad = - QA/(  1 + M2)a, _+ QA. Away from these critical levels the momentum 
flux is given by 
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The magnitudes of each term in (4.7) a t  a given distance above and below the 
critical levels are not the same. However, for the first term in (3.9) the energy flux 
pTW given by (4.5) is positive both above and below the critical levels, while for 
the second term it is negative above and below the critical levels. In  other words, 
the first wave is associated with upward transfer of energy and the second with 
downward transfer of energy. Thus, from (4.7), we find that the waves are 
attenuated a t  the critical layers by a factor exp ( - 2,um7r). This process of critical- 
layer absorption depends only on the gross features of the flow and not on the 
details of the critical layers. We note that the above attenuation factor reduces 
to the non-MHD attenuation factor of Hines (1968) in the limit 51, + 0. 

In  the two-dimensional case we find that waves are attenuated across the 
critical levels ad = _+ QA/(  1 + N2)* and in the hydrodynamic situation waves are 
attenuated only across the critical level Qd = 0. 

4.2. Group velocity near critical levels 
In  the previous subsection we discussed the propagation of waves near the 
critical levels using the concept of momentum transport. However, when the 
horizontal velocity U(z )  varies only slightly over distances of the order of a 
wavelength the concept of a wave group is extremely useful. This is a time- 
dependent train of waves of sufficient regularity for a local frequency, wave- 
number and amplitude to be everywhere approximately defined though these 
may vary with position and time. We shall focus attention on the propagation 
of these quantities rather than on the individual wave crests of which the train is 
composed. There is therefore a fundamental difference between this subsection 
and the previous one, where (r, k and 1 are constants. If the frequency CT and the 
wavenumbers k, 1 and m vary with position and time we can formally define the 
group velocity (see Acheson 1972) as 

U, = (aalak, aglai, aalam). 

Using the transformation 

equation (3.10) can be written in the form 

(4.9) 

where R and X are easily obtainable from (2.10) and (4.8). Now, if U(z ) ,  N ,  51, 
and c do not vary very much over a wavelength, an internal Alfvbn-acoustio- 
gravity wave with horizontal wavenumbers k and 1 and vertical wavenumber 
m satisfies the dispersion relation 

Q$ - [(a2 + m2 + 2p2) (c2 + A2) + QZ,] Qj + [(a2 + m2 + &P2) (c2 + A2) 512, 

+c2i22(a2+m2+J-P2) +a2(c2+A2) N 2 -  Q5N2-g2a2] 51; 

- c2515[(a2 +ma + $p2)  512s a2(N2 - g2/c2)] = 0. (4.10) 
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Converting this equation into a formula form we find that 
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Thus, as the wave group approaches the critical level z = zl, a t  which Sz; = a;, 
the vertical wavenumber m increases indefinitely and is given asymptotically by 

(Q: - QZ,) m: = PN2. (4.12) 

Now the vertical component &/am of the group velocity at  any level can be com- 
puted from (4.10), and the asymptotic behaviour of aa/am corresponding to (4.12) 
is given by 

(2  - z#. 
ag  _ -  ( 2 k d u p ~ ) 8  nf 
am- IN 

Thus when Iz -zll is small the height of the wave packet satisfies the equation 

dz/dt = a(2 - xlp, (4.13) 

where a is a constant. This may be integrated to give 

(Z - xl)4 = - 2/(& + b ) ,  (4.14) 

where b is another constant, and the wave packet thus slows down in such a way 
that it does not reach the critical level x = z1 in a finite time. It is therefore neither 
transmitted nor reflected. As the critical level is approached 

aglak -+ u -+ A,  ag/at -+ o. 

Thus the group is effectively captured in this neighbourhood and constrained 
thereafter to propagate along the mean flow. 

Also, from (4.11), we see that as the wave group approaches the critical level 
z = z2, at which Szz = Q5/( 1 + Mz), m increases indefinitely and when z - z2 is 
small the height of the wave packet qualitatively satisfies (4.14). Thus the wave 
group is captured in the neighbourhood of = z2 also. It is observed that, in two- 
dimensional propagation, waves are effectively capturedonlyat Q$ = a%/( 1 + M 2 )  
whereas in the hydrodynamic case waves are captured at Qd = 0. 

Apart from these levels there are other levels at which waves cease to propa- 
gate vertically. These levels, called reflexion levels, are given by (4.11) with 
m = 0. If a particular packet propagates towards a level x = z, where m = 0, the 
vertical group velocity decreases as Iz-z,.l*. Thus the time taken for the wave 
group to reach zr is finite and hence it is reflected there. 

A sketch of the ray trajectories (projected in the x, plane) is drawn in figure 1 
to show the reflexion and critical-layer absorption of waves in a compressible 
shear flow. These trajectories are drawn on the basis of an investigation of the 
ray-path slope dz/dx (see Acheson 1973; McKenzie 1973) at various points like 
critical and reflexion levels. The path drawn is that appropriate to g, k and I all 
positive. Thus a wave generated somewhere above or below its corresponding 
critical level and initially moving towards A, (i.e. where m = 0) is reflected 
towards its critical level and captured there. 
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FIGURE 1. Ray trajectories illustrating the critical-layer absorption for 
AlfvBn-acoustic-gravity waves in a shear flow. k, I, cr > 0. 

4.3. Wave normal curve 

These results also confirm the more general result (see McKensie 1973) obtained 
by tracing wave normal curves. If a wave normal curve, formed by taking the 
cross-section through the wave normal surface in the plane of propagation, 
possesses an asymptote, a critical level can exist provided that the properties of 
the medium vary in the direction parallel to the asymptote. It is clear from (4.11) 
and figure 2 that the wave normal curve appropriate to a slow magneto-acoustic 
gravity wave is asymptotic to the lines 

k = Q2,/A, QZ,(A-2+~-2)*. (4.15) 

Thus, since the properties of the medium (i.e. the Doppler-shifted frequency a,) 
vary with z, a critical level can exist at z = zl, where xl, correspond to 

k2 = Cli/A2, Cli(A-2+~-2 1. 
It is of interest to compare the wave normal curves (figure 2) in the presence of 

velocity shear and density stratification with those in the absence of these effects 
discussed by McKenzie (1973). Figure 2 reveals that (4.15) gives four absorption 
levels whereas two levels were predicted by McKenzie (1973). In  other words the 
combined effect of velocity shear and density stratification on magneto-acoustic 
internal gravity waves is to increase the number of absorption levels. 
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+ f,' 

FIGURE 2. Wave normal curves for AlfvBn-acoustic-gravity waves. 

5. Conclusion 

behaviour a t  
It has been shown that magneto-acoustic gravity waves exhibit singular 

in contrast to the singularities at  Qd = 0, f QC in the case of hydrodynamic com- 
pressible fluid discussed by Hines (1968) and !& = 0, & QA in the case of perfectly 
conducting inviscid Boussinesq fluid investigated by RVc. In  particular, two- 
dimensional magneto-acoustic gravity waves exhibit singular behaviour only at 
Qd = 0, 5 a,/( 1 + M2)*. From this we conclude that the combined effect of 
magnetic field and compressibility is to increase the number of critical levels. 
The propagation of waves near these critical levels was discussed using (a)  
momentum transfer to the mean flow (Booker & Bretherton 1967), ( b )  the group- 
velocity approach (Bretherton 1966) and ( c )  the wave normal curve approach 
(McKenzie 1973). The first approach shows that internal gravity waves with 
frequency CT and horizontal wavenumber components Ic and 1 propagating in a 
compressible shear flow are highly attenuated, by a factor exp ( - 2pmn), as 
they pass through the critical levels SZ, = f a,, i Q,/(l + M2)*, but will pass 
through other critical levels without any attenuation. This behaviour is similar 
to that discussed by Hines (1968) in the case of hydrodynamic compressible shear 
flow, where he has proved that internal gravity waves are attenuated as they pass 
through the critical level ad = 0 but will pass through the other critical levels 
without any attenuation. 

When this absorption mechanism is studied through the group-velocity 
approach (which is a consequence of WKBJ approximation), we find that a wave 
group travelling with the appropriate group velocity is neither transmitted nor 
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reflected but is completely absorbed near the critical levels Qd = QA, 
k Q,/( 1 + M2)&. Near these critical levels the vertical wavelength becomes very 
small and the motion is entirely in the horizontal direction. However, in the case 
of no propagation in the y direction (i.e. I = 0)  the waves are completely absorbed 
near the critical levels Qd = * QA/( 1 + JP)*. 

This absorption phenomenon was also investigated by drawing the wave 
normal curves following McKenzie (1973). Comparison of the wave normal curves 
(figure a),  discussed in $4.2, with those for magneto-acoustic waves in the 
absence of shear flow and density stratification (McKenzie 1973) reveals certain 
novel features. Magneto-acoustic waves with frequency cr and horizontal wave- 
numbers k and 1 in a fluid permeated by a shear magnetic field will be completely 
absorbed at  each of the two critical levels 

I% = & C( I + M2)*/A.  

In  contrast to this, magneto-acoustic internal gravity waves with frequency CT and 
horizontal wavenumbers k and 1 in a compressible shear flow (V(z),  0,O) with 
density stratification e-pz will be completely absorbed a t  each of the four critical 

k =  f Q 2 , / A ,  rt_Qd(l+M2)*/A. levels 

These absorption effects were also illustrated by drawing ray trajectories 
(figure 1). From comparison of these results we conclude that the combined 
effect of velocity shear and density stratification is to increase the number of 
absorption levels. 

The authors are grateful to the referee for valuable suggestions and comments. 
Two authors (M.V. and P.H.) are grateful to the CSIR for providing Research 
Fellowships. 
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